a2 United States Patent
Tripp et al.

US009436829B2

(10) Patent No.: US 9,436,829 B2
(45) Date of Patent: Sep. 6, 2016

(54) SECURITY TESTING OF WEB
APPLICATIONS WITH SPECIALIZED
PAYLOADS

(71) Applicant: GLOBALFOUNDRIES INC., Grand
Cayman (KY)

(72) Inventors: Omer Tripp, Bronx, NY (US);
Emmanuel Wurth, Saubens (FR)

(73) Assignee: GLOBALFOUNDRIES INC., Grand
Cayman (KY)

*) Notice: Subject to any disclaimer, the term of this
] y
patent is extended or adjusted under 35
U.S.C. 154(b) by 42 days.

(21) Appl. No.: 14/490,788
(22) Filed: Sep. 19, 2014

(65) Prior Publication Data
US 2015/0106943 Al Apr. 16, 2015

(30) Foreign Application Priority Data
Oct. 14,2013 (GB) oo 13181193
(51) Imt.ClL
GO6F 21/57 (2013.01)
HO4L 29/06 (2006.01)
(52) US.CL
CPC GO6F 21/577 (2013.01); HO4L 63/1433

(2013.01); HO4L 63/1483 (2013.01); GOGF
2221/033 (2013.01)

(58) Field of Classification Search
CPC HO4L 63/1441; HO4L 63/1483; HO4L
63/1416; HO4L 63/0245; HO4L 63/1433;
HO4L 27/2681; HO4L 1/008; HO4L 5/0044;
GOG6F 21/577;, GO6F 2221/033
See application file for complete search history.

EXITTESTING LOOP

INPUT PAYLOAD YOGABULARY
‘WITH EMPTY SET OF
CONSTRAINTS

(56) References Cited
U.S. PATENT DOCUMENTS

6,738,813 B1* 5/2004 Reichman 709/224
7,243,236 B1* 7/2007 Sibertccccoocveerieinn. 713/179
8,302,080 B2 10/2012 Wassermann et al.
8,949,990 B1* 2/2015 Hsiehcocecvvvrnnn. GO6F 21/577
726/22
2003/0159063 Al 8/2003 Apfelbaum et al.
2008/0270841 Al* 10/2008 Quilterccoeevevvcnrcenn 714/38
2009/0018811 Al 1/2009 Paradkar et al.
2009/0119777 Al* 5/2009 JeOn ...ccccocovvvveerieirrnrnnn. 726/25

2010/0169974 Al 7/2010 Calendino et al.
2013/0007885 Al 1/2013 Haviv et al.

(Continued)

FOREIGN PATENT DOCUMENTS

CN 102819710 A 12/2012
WO 2011073982 Al 6/2011
OTHER PUBLICATIONS

Anonymously; “System, Method and Apparatus for Dynamic Cre-
ation of Tests for Dynamic Application Security Testing”; An IP.com
Prior Art Database Technical Disclosure; http://iip.com/TPCOM/
000219447D; Jul. 2, 2012. 5 pgs.

Li et al., “Perturbation-based user-input-validation testing of web
applications,” The Journal of Systems and Software 83 (2010) 2263-
2274, Online pub date: Jul. 20, 2010.

(Continued)

Primary Examiner — Don Zhao
(74) Attorney, Agent, or Firm — Anthony J. Canale

(57) ABSTRACT

In one embodiment, a computer-implemented method for
security testing of web applications with specialized payloads
includes submitting a test to a web application, where the test
includes a payload with a set of constraints. A response is
received from the web application. One or more constraints
are derived from the response. The set of constraints of the
payload are updated with the derived one or more constraints.
The payload is synthesized, by a computer processor, for the
updated set of constraints. The test having the synthesized
payload is iterated with the updated set of constraints.

19 Claims, 4 Drawing Sheets

308 | ADD GONSTRAINTS
TO SET OF
GONSTRAINTS

a1 SYNTHESIZE NEW
PAYLOAD FOR SET
OF CONSTRAINTS

US 9,436,829 B2

Page 2
(56) References Cited OTHER PUBLICATIONS
Search Report from GB Patent Office for Application No.
U.S. PATENT DOCUMENTS GBI318119.3 dated Mar. 10, 2014, 4 pgs.

2013/0055397 Al 2/2013 Amit et al.
2013/0174262 Al 7/2013 Amit et al.
2014/0245159 Al* 8/2014 Levietal. ... 715/736 * cited by examiner

U.S. Patent Sep. 6, 2016 Sheet 1 of 4 US 9,436,829 B2

FIG. 1

DATA PROCESSING SYSTEM

140 Y TESTING SYSTEM

PAYLOAD SYNTHESIZER

1 CONSTRAINT ADAPTOR
142 | | 1—

143 TEST STARTING POINT COMPONENT
\

144 TEST SUBMITTING COMPONENT ‘\

145 RESPONSE ANALYSIS COMPONENT
L~

(
\

CONSTRAINT FEEDBACK COMPONENT
146 |17

147 TEST OUTCOME COMPONENT
Nt

130

SERVER / /

WEB APPLICATION
el
\

U.S. Patent Sep. 6, 2016 Sheet 2 of 4 US 9,436,829 B2

FIG. 2
200
____| DISPLAY
\\\\& 214
201 212\ 216
202 DATA PROCESSING SYSTEM
204 1 svysTEM MEMORY
NETWORK
205 Y ROM PROCESSOR ADADTER
A
BIOS VIDEO
ADAPTER
202" RAM
T SOFTWARE
20/ SYSTEM
PRIMARY /0
208 oS STORAGE DEVICES
d SECO
ECONDARY
209 STORAGE
— APPN.
210

\

211 212 203 213

U.S. Patent Sep. 6, 2016 Sheet 3 of 4 US 9,436,829 B2

FIG. 3

300
CREATE PAYLOAD WITH PAYLOAD
GRAMMAR FOR CONTEXT
301—" |

INPUT PAYLOAD VOCABULARY

302\/ WITH EMPTY SET OF
CONSTRAINTS
303

SELECT STARTING POINT

30
SUBMIT PAYLOAD TO SUBJECT ¥

APPLICATION

/

30
RECEIVE AND ANALYSE
RESPONSE FOR PAYLOAD

J

) C C(

30
YES o
307
DERIVE
308
EXIT TESTING LOOP ~__ CONSRTERS/;IIC\I)LSS EFROM
309 ADD CONSTRAINTS
TO SET OF
CONSTRAINTS
310 SYNTHESIZE NEW
\/ PAYLOAD FOR SET
OF CONSTRAINTS

U.S. Patent

400

/

Sep. 6, 2016 Sheet 4 of 4

FIG. 4

US 9,436,829 B2

401

(

INPUT: PAYLOAD GRAMMAR P,
INPUT POINT PT

402

ENCODE P AS PROPOSITIONAL
FORMULA F

404>

40

OBTAIN A PAYLOAD TEST TST
AS A SAT MODEL OF F

_| NOMODEL |
—UN SAT

40

SEND TST TO PT AND OBTAIN
RESPONSE RSP

RGN EK(

40

VALIDATE
RESPONSE?

TEST FAILED

TEST
SUCCEEDED

409

DERIVE PAYLOAD
CONSTRAINTS CNS
FROM RSP

EXIT: DETECTED
VULNERABILITY
WITH PAYLOAD TST

N

LET F=F CONJOINED
WITH CNS

N

/\
405

EXIT: NO
VULNERABILITY
FOUND

US 9,436,829 B2

1
SECURITY TESTING OF WEB
APPLICATIONS WITH SPECIALIZED
PAYLOADS

FOREIGN PRIORITY

This application claims priority to Great Britain Patent
Application No. 1318119.3, filed 14 Oct. 2013, and all the
benefits accruing therefrom under 35 U.S.C. §119, the con-
tents of which in its entirety are herein incorporated by ref-
erence.

BACKGROUND

Embodiments of this disclosure relate to the field of secu-
rity testing of web applications or services and, more particu-
larly, to security testing of web applications with specialized
payloads.

Security testing is an important area of research and devel-
opment. The rapid growth of mobile applications, web appli-
cations, and web services creates many opportunities for
security attacks, thus emphasizing the need for quality testing
of such applications.

One of the main challenges in security testing is to synthe-
size quality payloads, which are likely to demonstrate vulner-
abilities in the target software system if such vulnerabilities
indeed exist.

Current techniques rely on a generic pool of test payloads.
These are not specific to the target application. Instead, a
security expert defines all the payloads in advance, and the
testing tool is then responsible for choosing which of the
predefined payloads to send and in what order.

Advanced products have some limited adaptation capabili-
ties, deciding which payloads from the pool to try when
testing a given application. In these products, the choice of
next payload is based on an analysis of why the last payload
failed.

The testing tool has limited insight into the workings of
server-side defenses. This has traditionally led commercial as
well as research vulnerability scanners toward heuristic
approaches, such as testing each input point, e.g., Hypertext
Transfer Protocol (HTTP) parameter, with a short, predefined
list of effective test payloads to balance between coverage and
performance.

SUMMARY

In one embodiment, a computer-implemented method for
security testing of web applications with specialized payloads
includes submitting a test to a web application, where the test
includes a payload with a set of constraints. A response is
received from the web application. One or more constraints
are derived from the response. The set of constraints of the
payload are updated with the derived one or more constraints.
The payload is synthesized, by a computer processor, for the
updated set of constraints. The test having the synthesized
payload is iterated with the updated set of constraints.

In another embodiment, a system includes a memory and
one or more processors communicatively coupled to the
memory. The one or more processors are configured to submit
a test to a web application, where the test includes a payload
with a set of constraints. The one or more processors are
further configured to receive a response from the web appli-
cation and to derive one or more constraints from the
response. The one or more processors are further configured
to update the set of constraints of the payload with the derived
one or more constraints, and to synthesize the payload for the

30

40

45

55

2

updated set of constraints. The one or more processors are
further configured to iterate the test having the synthesized
payload with the updated set of constraints.

In yet another embodiment, a computer program product
for security testing of web applications with specialized pay-
loads includes a computer readable storage medium having
program instructions embodied therewith. The program
instructions are executable by a processor to cause the pro-
cessor to perform a method. The method includes submitting
a test to a web application, where the test includes a payload
with a set of constraints. Further according to the method, a
response is received from the web application. One or more
constraints are derived from the response. The set of con-
straints of the payload are updated with the derived one or
more constraints. The payload is synthesized for the updated
set of constraints. The test having the synthesized payload is
iterated with the updated set of constraints.

Additional features and advantages are realized through
the techniques of the present invention. Other embodiments
and aspects of the invention are described in detail herein and
are considered a part of the claimed invention. For a better
understanding of the invention with the advantages and the
features, refer to the description and to the drawings.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The subject matter which is regarded as the invention is
particularly pointed out and distinctly claimed in the claims at
the conclusion of the specification. The forgoing and other
features, and advantages of the invention are apparent from
the following detailed description taken in conjunction with
the accompanying drawings in which:

FIG. 1 is block diagram of a testing system environment,
according to some embodiments of this disclosure;

FIG. 2 is a block diagram of a computer system in which
the testing system may be implemented, according to some
embodiments of this disclosure;

FIG. 3 is a flow diagram of a first example method, accord-
ing to some embodiments of this disclosure; and

FIG. 4 is a flow diagram of a second example method,
according to some embodiments of this disclosure.

DETAILED DESCRIPTION

It will be appreciated that for simplicity and clarity of
illustration, elements shown in the figures have not necessar-
ily been drawn to scale. For example, the dimensions of some
of'the elements may be exaggerated relative to other elements
for clarity. Further, where considered appropriate, reference
numbers may be repeated among the figures to indicate cor-
responding or analogous features.

In the following detailed description, numerous specific
details are set forth in order to provide a thorough understand-
ing of the disclosure. However, it will be understood by those
skilled in the art that the various embodiments of the disclo-
sure may be practiced without these specific details. In other
instances, well-known methods, procedures, and components
have not been described in detail so as not to obscure the
embodiments described.

Method and system are provided for dynamic security
testing, whereby the testing tool does not require a list of
candidate payloads in advance of testing. Instead, the pay-
loads are generated on-the-fly during testing based on a syn-
thesis algorithm that is guided by hints or constraints, derived
from the ongoing testing session.

US 9,436,829 B2

3

The payload is the information sent to a web application at
a server for testing. Example payloads may include Exten-
sible Markup Language (XML) information for web services,
a uniform resource locator (URL) for PHP: Hypertext Pre-
processor scripts, Representational State Transfer (REST)
web services, etc. The payload may contain parts generated
by the described method using specific grammar adapted for
the technical context. The grammar of the payload describes
the way the items or vocabulary are structured together.

Referring to FIG. 1, a testing system environment 100 is
illustrated including a data processing system 110, which
may be remotely connected to a server 120, which may host
a web application 121. The data processing system 110 and
server 120 may be in communication via a network 130.

The data processing system 110 may include a testing
system 140 for testing the security of the web application 121.
Web applications 121 are highly vulnerable to security
attacks. The testing system 140 may aim to detect vulnerabili-
ties in the web application 121.

The testing system 140 may include a payload synthesizer
141 for synthesizing a payload for testing based on con-
straints derived from the testing session. The payload synthe-
sizer 141 may include a constraint adaptor 141 for updating
constraints based on feedback from the testing.

The testing system 140 may include a test starting point
component 144 for determining a starting probe or payload. A
test submitting component 144 may submit the test to the web
application 121 and receive the test response. A response
analysis component 145 may analyze the response and deter-
mine the outcome of the test.

The testing system 140 may include a constraint feedback
component 146 for updating the constraint adaptor 142 based
on the response to the previous test. An outcome component
147 may be provided to report the outcome of the testing to a
user.

Referring to FIG. 2, an exemplary system for implement-
ing aspects of the invention includes a data processing system
200, suitable for storing or executing program code, including
at least one processor 201 coupled directly or indirectly to
memory elements through a bus system 203. The memory
elements may include local memory employed during actual
execution of the program code, bulk storage, and cache
memories that provide temporary storage of at least some
program code to reduce the number of times code must be
retrieved from bulk storage during execution.

The memory elements may include system memory 202 in
the form of read only memory (ROM) 204 and random access
memory (RAM) 205. A basic input/output system (BIOS)
206 may be stored in ROM 204. System software 207 may be
stored in RAM 205, including operating system software 208.
Software applications 210 may also be stored in RAM 205.

The system 200 may also include a primary storage means
211, such as a magnetic hard disk drive, and secondary stor-
age means 212, such as a magnetic disc drive and an optical
disc drive. The drives and their associated computer-readable
media provide non-volatile storage of computer-executable
instructions, data structures, program modules, and other data
for the system 200. Software applications may be stored on
the primary and secondary storage means 211, 212 as well as
the system memory 202.

The computing system 200 may operate in a networked
environment using logical connections to one or more remote
computers via a network adapter 216.

Input/output devices 213 may be coupled to the system
either directly or through intervening I/O controllers. A user
may enter commands and information into the system 200
through input devices such as a keyboard, pointing device, or

10

15

20

25

30

35

40

45

50

55

60

65

4

other input devices (for example, microphone, joy stick, game
pad, satellite dish, scanner, or the like). Output devices may
include speakers, printers, etc. A display device 214 is also
connected to system bus 203 via an interface, such as video
adapter 215 which may include a GPU.

Referring to FIG. 3, a flow diagram 300 shows an example
embodiment of the described method.

Atthe beginning of the method, in a first iteration, there are
no specific constraints to synthesize the first payload. There-
fore a payload is created at block 301 based on existing
grammar, using various techniques adapted for the technical
context. In some embodiments, this first generation may be
done randomly, using tokens from a vocabulary that respects
the grammar. For example, token number X from the vocabu-
lary may be selected and then other tokens are added as
required using the rules defined by the grammar, so that the
result is a payload that starts with token X and respects the
grammar.

A payload vocabulary V is initially input at block 302,
initialized with an empty or starting set of constraints C. A
starting point may be selected, at block 303, which may be an
arbitrary probe or payload.

The payload may then be submitted, at block 304, to the
subjectapplication. A response may be received and analyzed
for the payload sent at block 305.

It may be determined at block 306 if the analysis is suc-
cessful. If so, then the process may exit the testing loop at
block 307.

Ifthe analysis is not successtul, constraints may be derived
at block 308 from the test failure and these may be added at
block 309 to the set of constraints C. A new payload over V
may be synthesized, at block 310, where the payload is com-
patible with the updated set of constraints C.

The method may loop and the new payload may be sub-
mitted at block 304 to the subject application.

Referring to FIG. 4, a flow diagram 400 shows a further
example embodiment of the described method.

An input is made at block 401 of payload grammar P and an
input point PT. The payload grammar P is encoded at block
402 as propositional formula F. A payload test (TST) is
obtained at block 403 as a SAT model of F. A SAT model is a
satisfying or unsatisfying solution, which takes the set of
constraints dynamically generated and applies them to the
grammar to determine if it is possible to generate a new
payload that respects the grammar and also respects the exist-
ing constraints.

If there is no possible model at block 404, it is UN SAT,
which means that there are no more solutions for this prob-
lem, and the process exits at block 405 as no vulnerability is
found.

For example, in some embodiments, if previous tests have
proven that some tokens are well handled by the application
(i.e., tokens X, Y, and Z), then as a result the constraints,
“payload should not contain token X,” “payload should not
contain token Y,” etc. may be added, and the SAT solver may
attempt to generate the new payload based on these con-
straints. If this is not possible, the result is UN SAT and there
are no more solutions, and therefore, no vulnerability is
found.

The payload test is sent at block 406 to the input point PT,
and a response (RSP) is obtained.

It may be determined at block 407 if the response is valid.
For example, this may be determined by testing that the
answers from the server do not contain the previously injected
tokens. If the test succeeded, for example, in the case that the
server side allows the return to the end user some injected

US 9,436,829 B2

5

tokens, then the process exits at block 408 with a detected
vulnerability with the payload test.

Ifthetest failed, payload constraints (CNS) may be derived
at block 409 from the response. A new propositional formula
F is proposed at block 410, equal to the previous F conjoined
with the constraints. The new propositional formula F is input
into step 403 to obtain a payload test as a SAT model of the
new F and the method iterates.

To cast this algorithm into a concrete example setting,
consider security testing of web applications, for example, for
cross-site scripting (XSS) vulnerabilities. XSS is ranked as
one of the top web vulnerabilities. XSS enables attackers to
inject client-side scripts into web pages viewed by other
users. An XSS vulnerability permits an attacker to bypass
access controls, such as the same-origin policy, which can
lead to significant security risks. Such risks commonly
include transmitting private data (like cookies) to the attacker,
or redirecting the victim to web content controlled by the
attacker.

In this example embodiment, the vocabulary for synthesis
of' new payloads consists of XSS tokens, such as script, alert,
JavaScript®, etc. Constraints learned during testing may be
about the tokens within the payload that undergo sanitization
(for example, if the response replaces script by an empty
string).

In some embodiments, synthesis of new payloads can be
achieved with a standard satisfiability solver, where the
learned sanitization-related constraints, and structural con-
straints over payloads, are encoded in propositional form.

More specifically, consider the common case of a PHP:
Hypertext Preprocessor (PHP) page and cross-site scripting
vulnerabilities. By design, such attacks consist of attempts to
inject code (i.e., user-provided scripts) to the remote server
using vulnerabilities (e.g., permeability to such injection due
to a lack of sanitizer).

Vulnerabilities that may also be detected arise when the
server side allows the return to the end user of some tokens
that belong to the XSS grammar, whereas the server side
could have sanitized all the tokens.

The context for XSS vulnerabilities is to check that there
are no capabilities for an external source to craft the server
answer with code that would be executed on the client side.
This kind of code injection could change the behavior of the
HTML page. For example, such a code injection may intro-
duce redirection to incorrect URLSs, change behavior of
specific buttons, alter display of information, etc. To avoid
this, the server side could sanitize all the inputs in order to
deleted all the possible code injection attempts.

An example implementation is described of a PHP script
that will ask for parameters and will return the result of the
input in terms of a form that compiles the previous param-
eters.

That is, the structure on the client side of the call (i.e., the
payload) executed against the server may be:

input.php?name=the input name etc. . . .

The result of this page will be an HTML answer, for
example:

<IDOCTYPE html><html><body>...
<input type="“text” value=" the input name />
...</body></htm|>

Following, this description will only focus on the <input/>
answer element.

20

35

40

45

50

60

65

6

For this example, it is assumed also that the server-side
code is protected by a sanitizer intended to prevent this code
injection. The structure of this sanitizer may be:

<Iphp

$pattern = “/((.*)on[A-Za-z]+=(*)I(.*)script(.*)I(.*)img(.*))/i”;
$param = §_REQUEST[*param’];

while (preg_match($pattern, $param, $matches)) {

$param = «;

for ($i=2; $i<count($matches); $i++) {

$param .= $matches[$i]; } }

>

An aim of the described method within this XSS technical
context will be to double check that the sanitizer in place on
the server side does not offer permeability to a cross-site
scripting attack. The described method, adapted to the XSS
context may thus: define an XSS payload grammar (with test
payloads); start with a default payload; validate whether the
result is correct (or not) according to the existence of the
attack into the server answer; update as required the SAT
encoding so that a new payload is created; and then loop over
the previous statements.

To define the grammar for this context, the grammar used
to synthesize the payloads nay be:

jsPayload --> [window [location]=jsLocation]
| eval(*ale’+‘1t’+(*probe’)’) | probe+{jsFnc:alert}
| eval(*ale’+1t’+*(“probe’)’) j alert(probe)
| eval(*ale”+“1t”+“(“probe™)”)

jsFne --> toString | valueOf

probe --> PROBE

location --> ‘location’ | “location” | ‘location’

jsLocation --> ...

In a first iteration, begin with the SAT formula true, which
lets whichever payload is wanted to be sent. Send some arbi-
trary payload, for example:

“onmouseover=alert(“XSS1”)/>
This payload, processed by the sanitizer, fails with the result:

<input type="text” value=" " alert(“XSS1”)/>"/>

The above may be represented as a constraint over the
grammar, stating that the payload may not contain the token
onmouseover.

In a second iteration, search for a payload that models the
updated SAT formula. One such payload may be:

“/><script>alert(“XSS2")</script>
This payload also fails with the result:

<input type="text” value=" " />< >alert(“XSS2”)< >" />

Thus, update the SAT formula to contain the additional
constraint that the token script is not contained in the payload.

In a third iteration, search for a production of the grammar
that models the updated SAT formula (containing two con-
straints), which leads to payload:

“style="width: expression(alert(XSS5))

This payload shows the sanitizer in question to be vulner-
able, having associated response:

<input type="text” value=" ”

(alert(*XSS5%))” />

In the specific embodiment referred to in the example, the
learned constraints are over the tokens having a payload (i.e.,
grammar tokens in the grammar representation). Other
options exist, including more advanced types of constraints.
As an example, regular constraints (i.c., ones that can be
expressed as a regular language) over the entire payload may
beused. This is useful in cases where the server-side defenses
are implemented as a regex match. The described method and

style="“width: expression

US 9,436,829 B2

7

system need not commit to any particular style of constraints,
but give only examples of possible constraint representations.

As for the actual encoding, following, the propositional
variables that are being introduced are explained. For the
simple example of token-based constraints, assume that there
are ntokens,t_1 ...t_n, such that each payload is a sequence
over this set of tokens. Starting with the basic SAT setting,
which abstracts away the payload’s being a sequence and
treats it as a set of tokens, each propositional variable corre-
sponds to a single token. Thus, v_1<=>tl, ..., v_n<=>t_n.
The formula is essentially the conjunction of token-based
constraints, e.g., 'v_1*!v_3*!v_5 which means that the pay-
load need not contain tokens v_1, v_3 and v_5.

A more sophisticated encoding may also account for the
fact that the payload is a sequence, and thus may define a
unique propositional variable per each token-offset pair,
where forinstance v_{3,1} means tokenv_3 at offset 1 within
the payload. This is useful if server-side defenses are likely to
block a token at a certain position, but not in other positions.
There are known real-world sanitization examples of this
nature.

An additional point is about encoding the grammar itself.
Following, it is explained how this is done by means of an
example. Assume for simplicity that the grammar contains
only three tokens, t_1, t_2, t_3, and two productions, [t1,t2]
and [t_1,t3]. Then generate the following initial formula:
(v_1*v_2)+(v_1*v_3). Now turn to the SAT solver for the
first payload, and get back v_1=1, v_2=1, which corresponds
to payload [t_1,t2]. Assume now that the constraint !t_2 is
learned. Then the updated formula is: ((v_1*v_2)+
(v_1*v_3))*!v_2. Turn to the SAT solver again, and this time
it directs to [t_1,t_3].

It would be understood that this form of encoding may put
the grammar productions, rather than the grammar itself, into
the form of a propositional formula. For a standard grammar
of security payloads, it may also be possible to encode the
grammar directly into a propositional formula by distinguish-
ing, via propositional variables, different occurrences of non-
terminal tokens. While both options are viable, the former
option may be simpler than the latter alternative of encoding
the grammar directly.

An advantage of the described method is that the synthe-
sized payloads may be specialized, per the behavior of the
application under consideration.

The developers of the testing algorithm are relieved of the
burden of building, and later maintaining and updating, a
comprehensive database of payloads in support of the tool,
which is a tedious and non-trivial task that requires high
expertise.

Users of the algorithm do not need to worry about updates
and maintenance issues. Also, the threat of poor coverage by
the algorithm because the payloads are not up-to-date may be
lifted.

According to an embodiment of this disclosure, there is
provided a method for security testing of web applications
with specialized payloads. The method may include submit-
ting a test to a web application, where the test includes a
payload with a set of constraints. One or more constraints are
derived from a received response to the test. The set of con-
straints may be updated with the derived constraints. The
payload may then be synthesized for the updated set of con-
straints. The test having the synthesized payload may be
iterated with the updated set of constraints.

The method may further include creating a payload includ-
ing defined grammar describing the way items in the payload
are structured together. In one embodiment, before a first
iteration of the test, a payload may be generated using random

10

15

20

25

30

35

40

45

50

55

60

65

8

items that respect the grammar. The test may have a first
payload with an empty set of constraints.

The method may further include selecting a starting point
for the test in the web application.

The method may further include applying the set of con-
straints to the grammar to determine whether it is possible to
generate a new payload that respects the grammar and
respects the existing constraints. The application may use a
satisfying or unsatisfying solution solver.

In one embodiment, the payload grammar may be encoded
as a propositional formula. The one or more constraints may
be token-based constraints. Alternatively, the one or more
constraints may be regular language constraints over the
entire payload.

In one example embodiment, the test may be a test for
cross-site scripting, and the payload may include constraints
in the form of tokens which should be sanitized by a server
hosting the web application under test.

The payload may be a sequence and may define a unique
propositional variable for each token-offset pair.

The payload may further include encoding grammar into a
propositional formula by distinguishing different occur-
rences of non-terminal tokens.

Another embodiment may be a system for performing a
method having the above features, or a computer program
product executable by a computer processor to implement
such a method.

The invention can take the form of an entirely hardware
embodiment, an entirely software embodiment or an embodi-
ment containing both hardware and software elements. In a
preferred embodiment, the invention is implemented in soft-
ware, which includes but is not limited to firmware, resident
software, microcode, etc.

The invention can take the form of a computer program
product accessible from a computer-usable or computer-
readable medium providing program code for use by or in
connection with a computer or any instruction execution sys-
tem. For the purposes of this description, a computer usable or
computer readable medium can be any apparatus that can
contain, store, communicate, propagate, or transport the pro-
gram for use by or in connection with the instruction execu-
tion system, apparatus or device.

The medium can be an electronic, magnetic, optical, elec-
tromagnetic, infrared, or semiconductor system (or apparatus
ordevice) or a propagation medium. Examples of'a computer-
readable medium include a semiconductor or solid state
memory, magnetic tape, a removable computer diskette, a
random access memory (RAM), aread only memory (ROM),
arigid magnetic disk and an optical disk. Current examples of
optical disks include compact disk read only memory (CD-
ROM), compact disk read/write (CD-R/W), and DVD.

Improvements and modifications can be made to the fore-
going without departing from the scope of the present inven-
tion.

The invention claimed is:

1. A computer-implemented method for security testing of
web applications with specialized payloads, the method com-
prising:

submitting to a web application a payload based on a set of

constraints of the payload, the set of constraints of the
payload being in form of tokens sanitizable by a server
hosting the web application, the submitting being at least
a portion of a vulnerability test for the web application,
and the vulnerability test being a test for cross-site
scripting;

receiving a response from the web application;

deriving one or more constraints from the response;

US 9,436,829 B2

9

updating, by a computer processor, the set of constraints of
the payload with the derived one or more constraints to
generate an updated set of constraints;

synthesizing, by the computer processor, an updated pay-

load based on the updated set of constraints, the updated
payload being submittable as input to the web applica-
tion for testing the web application;
iterating the vulnerability test one or more times by sub-
mitting to the web application the updated payload
based on the updated set of constraints; and

determining, in response to the vulnerability test, that no
vulnerability is identifiable in the web application,
responsive to a failure to synthesize a new updated pay-
load during the iterating.

2. The method of claim 1, wherein the vulnerability test
further comprises a first payload based on an empty set of
constraints.

3. The method of claim 1, further comprising:

creating the payload including a defined grammar describ-

ing how items in the payload are structured together.

4. The method of claim 3, further comprising, before a first
iteration of the vulnerability test, generating the payload
using random items that respect the defined grammar.

5. The method of claim 3, wherein the defined grammar of
the payload is encoded as a propositional formula.

6. The method of claim 3, further comprising determining
the failure to synthesize the new updated payload, wherein the
determining the failure comprises:

applying a current set of constraints to the defined gram-

mar; and

determining that it is impossible to generate a new payload

that respects the defined grammar and respects the cur-
rent set of constraints.

7. The method of claim 6, wherein the applying the current
set of constraints to the defined grammar comprises using a
satisfying or unsatisfying solution solver.

8. The method of claim 3, wherein the payload comprises
the defined grammar encoded into a propositional formula by
distinguishing occurrences of non-terminal tokens.

9. The method of claim 1, further comprising selecting a
starting point for the vulnerability test in the web application.

10. The method of claim 1, wherein the set of constraints of
the payload are token-based constraints.

11. The method of claim 1, wherein the set of constraints of
the payload are regular language constraints over the payload.

12. The method of claim 1, wherein the payload is a
sequence and defines a unique propositional variable for each
token-offset pair.

13. A system for security testing of web applications with
specialized payloads, comprising:

a memory; and

one or more processors, communicatively coupled to the

memory, the one or more processors configured to:
submit to a web application a payload based on a set of

constraints, the set of constraints of the payload being in

form of tokens sanitizable by a server hosting the web

application, the submitting being at least a portion of a

vulnerability test for the web application, and the vul-

nerability test being a test for cross-site scripting;
receive a response from the web application;

derive one or more constraints from the response;

update the set of constraints of the payload with the derived

one or more constraints to generate an updated set of
constraints;

5

15

40

45

60

10

synthesize an updated payload based on the updated set of
constraints, the updated payload being submittable as
input to the web application for testing the web applica-
tion;

iterate the vulnerability test one or more times by submit-

ting to the web application the updated payload based on
the updated set of constraints; and

determine, in response to the vulnerability test, that no

vulnerability is identifiable in the web application,
responsive to a failure to synthesize a new updated pay-
load during the iterating.

14. The system of claim 13, the one or more processors
being further configured to select a starting point for the
vulnerability test in the web application.

15. The system of claim 13, the one or more processors
being further configured to create the payload according to a
defined grammar describing how items in the payload are
structured together.

16. The system of claim 15, the one or more processors
being further configured, before a first iteration of the vulner-
ability test, to generate the payload using random items that
respect the defined grammar.

17. The system of claim 15, the one or more processors
being further configured to determine the failure to synthesize
the new updated payload, wherein to determine the failure,
the one or more processors are further configured to:

apply a current set of constraints to the defined grammar;

and

determining that it is impossible to generate a new payload

that respects the defined grammar and respects the cur-
rent set of constraints.

18. The system of claim 17, the one or more processors
being configured to apply the current set of constraints to the
defined grammar by using a satisfying or unsatisfying solu-
tion solver.

19. A computer program product for security testing of web
applications with specialized payloads, the computer pro-
gram product comprising a non-transitory computer readable
storage medium having program instructions embodied
therewith, the program instructions executable by a processor
to cause the processor to perform a method comprising:

submitting to a web application a payload based on a set of

constraints of the payload, the set of constraints of the
payload being in form of tokens sanitizable by a server
hosting the web application, the submitting being at least
a portion of a vulnerability test for the web application,
and the vulnerability test being a test for cross-site
scripting;

receiving a response from the web application;

deriving one or more constraints from the response;

updating the set of constraints of the payload with the

derived one or more constraints to generate an updated
set of constraints;

synthesizing an updated payload based on the updated set

of constraints, the updated payload being submittable as
input to the web application for testing the web applica-
tion;
iterating the vulnerability test one or more times by sub-
mitting to the web application the updated payload
based on the updated set of constraints; and

determining, in response to the vulnerability test, that no
vulnerability is identifiable in the web application,
responsive to a failure to synthesize a new updated pay-
load during the iterating.

#* #* #* #* #*

